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Methodology 
Key methodological elements of the 
GBF-O concept are:
1.  Observations from the air-sea 

interface through the euphotic, 
mesopelagic, and bathypelagic zones 
to the seafloor

2.  Sustained, synchronized time-series 
observational modes to monitor the 
seasonal and interannual rhythms of 
the biological pump 

3.  Ecosystem characterization 
encompassing a broad spectrum of 
organisms from pelagic to benthic 
communities, and from prokaryotes 
to zooplankton 

4.  Implementation and maintenance of 
centralized laboratories for accurate 
and precise determination of core 
biogeochemical flux parameters 

5.  Incorporation of profiling and fixed-
depth contextual instrumentation

6.  Construction of a long-term archive 
that acquires and preserves samples 
for future in-depth “omics” and related 
studies associated with biogeochemical 
and paleoceanographic proxy research 
(Online Supplement, Section 2)

Technical Readiness
The challenges of implementing the 
GBF-O approach are formidable, but they 
must be met in order to fully understand 
the workings of the biological pump and 
associated processes in the context of 
global change. Autonomous observation 
of ocean properties represents a major 
new emphasis within the ocean science 
community (e.g., Johnson et al., 2009; 
Bishop, 2009), and remote observation 
capabilities are continuously being devel-
oped. Mooring systems that support full 
ocean depth biogeochemical experiments 
also have advanced during US JGOFS 
and related programs. As for any 
observatory, it is essential that all of the 

associated instruments and supporting 
materials be designed and manufactured 
to produce consistent results. Mass 
production of instruments and mooring 
platforms is crucial to ensure broad 
availability of serviceable, cost-effective 
systems that meet rigorous specifications. 

Orchestration of GBF-O Arrays 
Synchronization of instruments and 
sensors within and between observatory 
arrays is critical for understanding the 
rhythms of global ocean biogeochemi-
cal processes. The majority of POC (often 
70% to 90% of annual export) and other 
biogenic particulates are produced 
during episodes that usually occur only 
once or a few times a year in response 
to seasonal phytoplankton blooms 
(e.g., Wefer et al., 1988). The resulting 
sharp export pulses gradually diminish 
in amplitude with depth (reviewed in 
Honjo et al., 2008). Defining the annual 
pattern and evolution of this curve 
throughout the water column represents 
an important aspect of constraining the 
functioning of the biological pump and 
its impact on ocean-atmosphere carbon 
balances (Kwon et al., 2009). 

Preliminary Vision for GBF-O 
Implementation
Figure 3 presents one vision of a stand-
alone GBF-O instrument. Although 
dependent upon local bathymetric 
conditions, the moorings within the 
array would typically be set from several 
to 12 nm apart (to allow for unob-
structed deployment). Each mooring 
would be kept in vertical alignment by 
a single syntactic-foam sphere with the 
appropriate buoyancy. In this example of 
a GBF-O array, samplers are deployed at 
specific intervals along each mooring to 
cover different water column domains. 
Such an array could host more than 

25 major time-series devices as well as 
many contextual sensors and “guest” 
instruments. Further details of the 
GBF-O array and instruments are in the 
Online Supplement, Section 4. 

A single array of this type, equipped 
with the instrumentation capabilities 
depicted in Figure 3, would yield a 
wealth of new information. Deployment 
of multiple arrays throughout the major 
ocean basins would form the basis for a 
GBF-O. Selection of specific locations for 
array deployments would be based on 
multidisciplinary perspectives and con-
sensus in order to maximize our level of 
understanding and predictive capability 
regarding biological pump processes. 
Criteria for determining array locations 
would, for example, involve assessments 
of primary production based on ocean 
color (e.g., Behrenfeld and Falkowski, 
1997), ocean biogeochemical provinces 
(e.g., Longhurst et al., 1995), observa-
tions from prior studies (e.g., Honjo 
et al., 2008), bathymetric variations, and 
maritime logistics.

CONCLUSION 
Our ability to model the workings 
of the oceanic biological pump 
comprehensively and accurately is a 
critical component of global efforts 
to forecast the trajectory and effects 
of anthropogenic climate change. We 
have begun to understand the major 
features of the biological pump and its 
key role in the sequestration of carbon 
in the ocean, but we are still blind to 
many of its characteristics and far from 
developing comprehensive mechanistic 
and quantitative constraints on its 
myriad processes. Assessment of the 
impact of climate change on ocean bio-
geochemical processes and ecosystems, 
and vice versa, can only be addressed 
via global, standardized, sustained, 
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synchronous observations over coming 
decades. Indeed, we hope to galvanize 
the oceanographic community to cham-
pion the need for a century of ocean 
observation—deploying a truly global 
array of state-of-the-art sensors and 
other instrumentation that will be neces-
sary for understanding not only carbon 
flow in the ocean but also all of the 
ocean’s intimately related inhabitants.

Recent rapid progress in underwater 
technologies, particularly ocean 
robotics and novel in situ sensors, 
experimentation platforms, and discrete 
samplers, has made it feasible to develop 
high-endurance sentry instruments 
capable of operating in diverse ocean 
environments to provide these essential 
data. However, the magnitude of the 
undertaking will require international 
scientific coordination and funding. We 
must strive as a community to integrate 
all emerging ocean observatories to 
forge the best possible global planetary 
observation network and elevate its 
priority above that which already exists 
for other bodies in our solar system 
and far beyond. The scientific and 
societal imperatives are clear—and the 
clock is ticking. 
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(a) A time-series Remote Access 
Sampler (RAS) collects phyto-
plankton, suspended particles, 
and water samples (500 ml). 
 
(b) The central valve system 
of an RAS. An array of filter 
holders for phytoplankton and 
suspended particle collection 
can be seen in the background. 
 
(c) A side view of (a). All water 
bags (Al-foil/Teflon laminated) 
are filled here with collected 
water, providing one year of 
time-series sampling. 
 
(d) Transmission electron 
micrographs of (left) a cope-
pod’s gut (Gowing and Wishner, 
1998) and (right) a fecal pellet 
containing coccoliths and 
diatom frustules (Honjo, 1997).
 
(e) Bacterioplankton/protist 
sampling device (FF3) filter 
holder. Organisms, particularly 
microbes, that collect on the 
filter are fixed by a nucleic acid 
preserving solution (such as 
RNAlater®) during filtering and 
are then immersed in the same 
solution for long-term storage 
and preservation. The FF3 
filter holders can be used with 
RASs (a) or other meso-fluidic 
micro-pumps.
 
(f, g, h) RNA-preserving, 
time-series zooplankton 
sampler (ZPS) systems. 
Zooplankton are sucked from 
an intake located on the top 
of the pump system (f) and 
introduced into a sample 
retainer (3 x 5 cm x 0.5 mm) 
made of a strip of plankton 
net. The sample retainer is 
synchronously covered with 
another plain strip of net so 
that the collected zooplankton 
are confined within a few mm 
space between a pair of plank-
ton nets. The sample retainer 
then rolls into a tank containing 
preservative such as RNA later®, 
where the sample is stored. 
The ZPS is designed to collect 
50 time-series samples during a 
year’s deployment. 
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(i.e., many times a day). As a standard mode of operation, a ZPS 
is programmed to pass 500 L of water through each sampling 
cage, repeating this operation 50 times for a total of 25,000 L 
during a deployment. At this time, ZPS technology has already 
been applied to quantitative collection of zooplankton during 
CTD lowerings. Improvement is needed to prevent leakage of 
preservative from the retainer tank during long-term operations. 
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